The Kinematics of Swimming and Relocation Jumps in Copepod Nauplii

نویسندگان

  • Christian Marc Andersen Borg
  • Eleonora Bruno
  • Thomas Kiørboe
چکیده

Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamics and energetics of jumping copepod nauplii and copepodids.

Within its life cycle, a copepod goes through drastic changes in size, shape and swimming mode. In particular, there is a stark difference between the early (nauplius) and later (copepodid) stages. Copepods inhabit an intermediate Reynolds number regime (between ~1 and 100) where both viscosity and inertia are potentially important, and the Reynolds number changes by an order of magnitude durin...

متن کامل

Prey Detection and Prey Capture in Copepod Nauplii

Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed vi...

متن کامل

Predator avoidance by nauplii

We examined anti-predation strategies in relation to motility patterns for early and late nauplii of 6 species of copepods (Calanus helgolandicus, Centropages typicus, Eurytemora affinis, Euterpina acutifrons, Acartia tonsa and Temora longicornis). Remote detection and escape abilities were quantified in siphon flows. Nauplii respond with distinct escape jumps at speciesand stagespecific averag...

متن کامل

The fluid dynamics of swimming by jumping in copepods.

Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs, resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic predators. We developed an impulsive stresslet model to quantify the jump-imposed flow disturbance. T...

متن کامل

Motility of copepod nauplii and implications for food encounter

Velocity differences drive all encounter processes. Therefore, knowledge of both prey and predator motility are essential in order to understand feeding behavior and predict food acquisition rates. Here, we describe and quantify the motility behavior of young and old naupliar stages of 6 copepods (Centropages typicus, Calanus helgolandicus, Temora longicornis, Acartia tonsa, Eurytemora affinis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012